Some issues on nanoindentation method to measure the elastic modulus of particles in composites

نویسندگان

  • Wenyi Yan
  • Chung Lun Pun
  • Zonghui Wu
  • George P. Simon
چکیده

The application of the indentation method to measure the elastic modulus of particles embedded in a composite is theoretically investigated in this paper by finite element simulation. The Oliver–Pharr method, which is widely used in commercial nanoindentation instruments, is used to probe the elastic modulus of the particle from the simulated indentation curve. The predicted elastic modulus is then compared with the inputted value. Two cases are studied, that of a stiff particle embedded in a soft matrix and a soft particle embedded in a stiff matrix. In both of these cases, there exists a particle-dominated depth. If the indentation depth lies within this particle-dominated depth, the Oliver–Pharr method is able to be applied to measure the particle’s elastic modulus with sufficient accuracy if the real contact area is used. This could lead to an experimentally-convenient method of determining the primary properties of individual particle, providing they can be well dispersed in the polymeric matrix. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical study on reinforced composites by spherical nano-particles

In the current paper, finite element method is employed for numerical simulations and the study of influential parameters on elastic modulus of polymer-matrix nano-composites. Effects of different key parameters including particle elastic modulus, interphase elastic modulus, matrix elastic modulus, interphase thickness and particle volume fraction on total elastic modulus of nano-composite mate...

متن کامل

A numerical study on reinforced composites by spherical nano-particles

In the current paper, finite element method is employed for numerical simulations and the study of influential parameters on elastic modulus of polymer-matrix nano-composites. Effects of different key parameters including particle elastic modulus, interphase elastic modulus, matrix elastic modulus, interphase thickness and particle volume fraction on total elastic modulus of nano-composite mate...

متن کامل

Conditions of applying Oliver–Pharr method to the nanoindentation of particles in composites

The indentation test is a popular experimental method to measure a material’s mechanical properties such as elastic modulus and hardness, and the Oliver–Pharr method is commonly used in commercial indentation instruments to obtain these two quantities. To apply the Oliver–Pharr method correctly in all of these cases, it is essential to know the limitations of this method. The present study focu...

متن کامل

Investigation of Mechanical Properties Prediction of Synthesized Nylon-66/Nano-Calcium Carbonate Composites

In this research, the influence of adding micro- and nano- sized calcium carbonate powders to nylon-66 was investigated. Mechanical properties of micro and nano- composites, including tensile strength, elongation, and Young’s modulus, before and after ageing, were determined and analyzed. For this purpose, micro- and nano-sized CaCO3 particles were used as fillers to prepare micro-composites (c...

متن کامل

Mechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study

Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011